On the Similarity over the Ring of Integers of Certain Nilpotent Matrices of Maximal Rank

Author:

Sidorov Sergey V.1ORCID,Utkin German V.1ORCID

Affiliation:

1. National Research Lobachevsky State University of Nizhny Novgorod

Abstract

This paper is devoted to the problem of matrix similarity recognition over the ring of integers for some families of matrices. Namely, nilpotent upper triangular matrices of maximal rank are considered such that only first and second superdiagonals of these matrices are non-zero. Several necessary conditions are obtained for similarity of such matrices to matrices of the form superdiag(a1,a2,…,an−1) with a single non-zero superdiagonal, that is a generalization of the Jordan cell Jn(0)=superdiag(1,1,…,1) . These conditions are formulated in simple terms of divisibility and greatest common divisors of matrix elements. The result is obtained by reducing the problem of similarity recognition to the problem of solving in integers a system of linear equations and applying the known necessary similarity conditions for arbitrary matrices. Under some additional conditions on the elements a1,a2,…,an−1 of the first superdiagonal of matrix A , it is proven that the matrix A is similar to matrix superdiag(a1,a2,…,an−1) regardless of the values of the elements of the second superdiagonal. Moreover, for the considered matrices of the third and the fourth orders, easily verifiable necessary and sufficient similarity conditions are obtained describing their similarity to a matrix of the form superdiag(a1,a2,…,an−1) .

Publisher

National Research Mordovia State University MRSU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3