On topology of manifolds admitting gradient-like calscades with surface dynamics and on growth of the number of non-compact heteroclinic curves

Author:

Grines Vyacheslav Z.1ORCID,Gurevich Elena Ya.1ORCID,Yakovlev Evgenii Iv.1ORCID

Affiliation:

1. National Research University «High School of Economics»

Abstract

We consider a class GSD(M3) of gradient-like diffeomorphisms with surface dynamics given on closed oriented manifold M3 of dimension three. Earlier it was proved that manifolds admitting such diffeomorphisms are mapping tori under closed orientable surface of genus g, and the number of non-compact heteroclinic curves of such diffeomorphisms is not less than 12g. In this paper, we determine a class of diffeomorphisms GSDR(M3)⊂GSD(M3) that have the minimum number of heteroclinic curves for a given number of periodic points, and prove that the supporting manifold of such diffeomorphisms is a Seifert manifold. The separatrices of periodic points of diffeomorphisms from the class GSDR(M3) have regular asymptotic behavior, in particular, their closures are locally flat. We provide sufficient conditions (independent on dynamics) for mapping torus to be Seifert. At the same time, the paper establishes that for any fixed g geq1, fixed number of periodic points, and any integer n≥12g, there exists a manifold M3 and a diffeomorphism f∈GSD(M3) having exactly n non-compact heteroclinic curves.

Publisher

National Research Mordovia State University MRSU

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3