Power Analysis of Toroidal Core Electromagnetic Energy Harvesters for Transmission Lines

Author:

Balci Muhammed Samil1ORCID,Dalcali Adem1ORCID

Affiliation:

1. Bandirma Onyedi Eylul University

Abstract

Introduction. As the need for energy increases, energy harvesting methods have also been intensively researched. Energy harvesting techniques which are a way of converting low amounts of energy from the environment into electrical energy can be used to meet the energy needs of low-power electronic devices and sensors. The increase in such sensors and devices with low power consumption also makes energy harvesting techniques more important. One of these harvesting techniques is energy harvesting from electromagnetic fields, which is obtained from transmission lines. Aim of the Article. The article is aimed at developing an effective electromagnetic energy harvester from energy transmission lines for unmanned aerial vehicles. Materials and Methods. The method of harvesting energy from transmission lines through magnetic field energy harvesting is reviewed. Theoretical analyses, Finite Element Analyses (FEA), and experimental studies are conducted on toroidal core structures designed in different sizes and with different materials. Results. Among the selected materials and under the specified line conditions, current of 0‒30 A and a frequency of 50 Hz, the highest power of 695.516 mW was harvested by the 60x30x20 sized ferrite core harvester at a line current of 30 A. Discussion and Conclusion. Detailed experiments were conducted based on the 60x30x20 mm ferrite core, which demonstrated the highest induced voltage. Different load resistances were used to find the resistance value for the highest power at each current value. The optimal load resistance for maximum power transmission was determined for each core using the curve fitting method at all current values.

Publisher

National Research Mordovia State University MRSU

Subject

General Medicine

Reference20 articles.

1. Moser M.J., Bretterklieber T., Zangl H., Brasseur G. Strong and Weak Electric Field Interfering: Capacitive Icing Detection and Capacitive Energy Harvesting on a 220-kV high-voltage overhead power Line. IEEE Transactions on Industrial Electronics. 2011;58(7):2597–2604. https://doi.org/10.1109/TIE.2010.2098362

2. Liu Y., Xie X., Hu Y., Qian Y., Sheng G., Jiang X., et al. A Novel High-density power Energy Harvesting Methodology for Transmission Line online Monitoring Devices. Review of Scientific Instruments. 2016;87(7):075119. https://doi.org/10.1063/1.4959556

3. Zhuang Y., Xu C., Yuan S., He C., Chen A., Lee W.W., et al. An Improved Energy Harvesting System on Power Transmission Lines. In: 2017 IEEE Wireless Power Transfer Conference (WPTC). 2017. p. 1–3. https://doi.org/10.1109/WPT.2017.7953847

4. dos Santos M.P., Vieira D.A., Rodriguez Y.P., de Souza C.P., de Moraes T.O., Freire R.C. Energy Harvesting Using Magnetic Induction Considering Different Core Materials. IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 2014;942–944. https://doi.org/10.1109/I2MTC.2014.6860881

5. De Moraes T.O., Malina Y.P., Melo E.C.D.S., De Souza C.P., Experimental Results on Magnetic Cores for Magnetic Induction-Based energy Harvesting. 17th TC-4 Workshop IWADC on ADC and DAC Modeling and Testing. 2013;65. Available at: https://www.researchgate.net/publication/290829983_Experimental_results_on_magnetic_cores_for_magnetic_induction-based_energy_harvesting (accessed 10.06.2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3