Iteration of Cox rings of klt singularities

Author:

Braun Lukas1,Moraga Joaquín2

Affiliation:

1. Institut fur Mathematik Leopold‐Franzens‐Universität Innsbruck Innsbruck Austria

2. Department of Mathematics Princeton University Princeton New Jersey USA

Abstract

AbstractIn this article, we study the iteration of Cox rings of klt singularities (and Fano varieties) from a topological perspective. Given a klt singularity , we define the iteration of Cox rings of . The first result of this article is that the iteration of Cox rings of a klt singularity stabilizes for large enough. The second result is a boundedness one, we prove that for an ‐dimensional klt singularity , the iteration of Cox rings stabilizes for , where only depends on . Then, we use Cox rings to establish the existence of a simply connected factorial canonical (or scfc) cover of a klt singularity, with general fiber being an extension of a finite group by an algebraic torus. The scfc cover generalizes both the universal cover and the iteration of Cox rings. We prove that the scfc cover dominates any sequence of quasi‐étale finite covers and reductive abelian quasi‐torsors of the singularity. We characterize when the iteration of Cox rings is smooth and when the scfc cover is smooth. We also characterize when the spectrum of the iteration coincides with the scfc cover. Finally, we give a complete description of the regional fundamental group, the iteration of Cox rings, and the scfc cover of klt singularities of complexity one. Analogous versions of all our theorems are also proved for Fano‐type morphisms. To extend the results to this setting, we show that the Jordan property holds for the regional fundamental group of Fano‐type morphisms.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reductive quotients of klt singularities;Inventiones mathematicae;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3