Author:
Brumley Farrell,Marshall Simon
Abstract
Let $G$ be an anisotropic semisimple group over a totally real number field $F$. Suppose that $G$ is compact at all but one infinite place $v_{0}$. In addition, suppose that $G_{v_{0}}$ is $\mathbb{R}$-almost simple, not split, and has a Cartan involution defined over $F$. If $Y$ is a congruence arithmetic manifold of non-positive curvature associated with $G$, we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.
Subject
Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献