Level raising mod 2 and arbitrary 2-Selmer ranks

Author:

Le Hung Bao V.,Li Chao

Abstract

We prove a level raising mod $\ell =2$ theorem for elliptic curves over $\mathbb{Q}$. It generalizes theorems of Ribet and Diamond–Taylor and also explains different sign phenomena compared to odd $\ell$. We use it to study the 2-Selmer groups of modular abelian varieties with common mod 2 Galois representation. As an application, we show that the 2-Selmer rank can be arbitrary in level raising families.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference32 articles.

1. Automorphic lifts of prescribed types

2. [Kas99] P. L. Kassaei , p-adic modular forms over Shimura curves over Q, PhD thesis, Massachusetts Institute of Technology, ProQuest LLC, Ann Arbor, MI (1999); MR 2716881.

3. [Ste13] W. A. Stein , Sage mathematics software (ver. 5.11), The Sage Development Team, 2013, http://www.sagemath.org.

4. Euler systems and Jochnowitz congruences;Bertolini;Amer. J. Math.,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GLOBALLY REALIZABLE COMPONENTS OF LOCAL DEFORMATION RINGS;Journal of the Institute of Mathematics of Jussieu;2020-09-03

2. Raising the level at your favorite prime;Rendiconti Lincei - Matematica e Applicazioni;2020-04-03

3. GOLDFELD’S CONJECTURE AND CONGRUENCES BETWEEN HEEGNER POINTS;Forum of Mathematics, Sigma;2019

4. Congruences for Modular Forms mod 2 and QuaternionicS-ideal Classes;Canadian Journal of Mathematics;2018-10-01

5. Level Raising mod 2 and Obstruction to Rank Lowering;International Mathematics Research Notices;2017-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3