Abstract
We construct a complex analytic version of an equivariant cohomology theory which appeared in a paper of Rezk, and which is roughly modelled on the Borel-equivariant cohomology of the double free loop space. The construction is defined on finite, torus-equivariant CW complexes and takes values in coherent holomorphic sheaves over the moduli stack of complex elliptic curves. Our methods involve an inverse limit construction over all finite-dimensional subcomplexes of the double free loop space, following an analogous construction of Kitchloo for single free loop spaces. We show that, for any given complex elliptic curve $\mathcal {C}$, the fiber of our construction over $\mathcal {C}$ is isomorphic to Grojnowski's equivariant elliptic cohomology theory associated to $\mathcal {C}$.
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献