Author:
Iovita Adrian,Morrow Jackson S.,Zaharescu Alexandru
Abstract
Let $p$ be a rational prime, let $F$ denote a finite, unramified extension of ${{\mathbb {Q}}}_p$, let $K$ be the maximal unramified extension of ${{\mathbb {Q}}}_p$, ${{\overline {K}}}$ some fixed algebraic closure of $K$, and ${{\mathbb {C}}}_p$ be the completion of ${{\overline {K}}}$. Let $G_F$ be the absolute Galois group of $F$. Let $A$ be an abelian variety defined over $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor $T_p(A)$ with ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if $T_p(A)^{G_K} = 0$, then $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of $A$ and show that if $T_p(A)^{G_K} = 0$, then $A(\overline {K})$ has a type of $p$-adic uniformization, which resembles the classical complex uniformization.
Subject
Algebra and Number Theory
Reference37 articles.
1. Stable reduction and uniformization of abelian varieties I
2. Fon94 Fontaine, J.-M. , Représentations $p$ -adiques semi-stables, in Périodes $p$ -adiques, Astérisque, vol. 223 ( Société Mathématique de France , 1994), 113–184; MR 1293972.
3. Exposé II (appendice) : Les nombres algébriques sont denses dans $B^{+}_{\text {dR}}$, in Périodes $p$-adiques;Colmez;Société Mathématique de France,1994
4. Intégration sur les variétés $p$-adiques;Colmez;Astérisque,1998
5. Hodge-Tate periods andp-adic abelian integrals
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献