Minimizing properties of networks via global and local calibrations

Author:

Pluda Alessandra1ORCID,Pozzetta Marco2ORCID

Affiliation:

1. Dipartimento di Matematica Università di Pisa Pisa Italy

2. Dipartimento di Matematica e Applicazioni Università di Napoli Federico II Naples Italy

Abstract

AbstractIn this note, we prove that minimal networks enjoy minimizing properties for the length functional. A minimal network is, roughly speaking, a subset of composed of straight segments joining at triple junctions forming angles equal to ; in particular such objects are just critical points of the length functional a priori. We show that a minimal network : (i) minimizes mass among currents with coefficients in an explicit group (independent of ) having the same boundary of , (ii) identifies the interfaces of a partition of a neighborhood of solving the minimal partition problem among partitions with same boundary traces. Consequences and sharpness of such results are discussed. The proofs reduce to rather simple and direct arguments based on the exhibition of (global or local) calibrations associated to the minimal network.

Publisher

Wiley

Subject

General Mathematics

Reference22 articles.

1. The calibration method for the Mumford-Shah functional and free-discontinuity problems

2. Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ$\Gamma$‐convergence;Ambrosio L.;J. Math. Pures Appl. (9),1990

3. Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization;Ambrosio L.;J. Math. Pures Appl. (9),1990

4. Functions of Bounded Variation and Free Discontinuity Problems

5. Variational Approximation of Functionals Defined on 1-dimensional Connected Sets: The Planar Case

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3