Subrank and optimal reduction of scalar multiplications to generic tensors

Author:

Derksen Harm1,Makam Visu2,Zuiddam Jeroen34ORCID

Affiliation:

1. Department of Mathematics Northeastern University Boston Massachusetts USA

2. Radix Trading Europe B.V., Strawinskylaan Amsterdam Netherlands

3. Korteweg‐de Vries Institute for Mathematics University of Amsterdam Amsterdam Netherlands

4. Centrum Wiskunde & Informatica Amsterdam Netherlands

Abstract

AbstractThe subrank of a tensor measures how much a tensor can be diagonalized. We determine this parameter precisely for essentially all (i.e., generic) tensors. Namely, we prove for generic tensors in with that the subrank is . Our result significantly improves on the previous upper bound from the work of Strassen (1991) and Bürgisser (1990) which was . Our result is tight up to an additive constant. Our full result covers not only 3‐tensors but also ‐tensors, for which we find that the generic subrank is . Moreover, as an application, we prove that the subrank is not additive under the direct sum. As a consequence of our result, we obtain several large separations between the subrank and tensor methods that have received much interest recently, notably the slice rank (Tao, 2016), analytic rank (Gowers–Wolf, 2011; Lovett, 2018; Bhrushundi–Harsha–Hatami–Kopparty–Kumar, 2020), geometric rank (Kopparty–Moshkovitz–Zuiddam, 2020), and G‐stable rank (Derksen, 2020). Our proofs of the lower bounds rely on a new technical result about an optimal decomposition of tensor space into structured subspaces, which we think may be of independent interest.

Funder

National Science Foundation

University of Melbourne

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Reference44 articles.

1. J.Alman Limits on the universal method for matrix multiplication 34th Computational Complexity Conference (CCC 2019) 2019 pp.12:1–12:24 DOI10.4230/LIPIcs.CCC.2019.12.

2. P.Bürgisser Degenerationsordnung und Trägerfunktional bilinearer Abbildungen Ph.D. thesis Universität Konstanz 1990 http://nbn‐resolving.de/urn:nbn:de:bsz:352‐opus‐20311.

3. On cap sets and the group-theoretic approach to matrix multiplication

4. Algebraic Complexity Theory

5. A.Bhrushundi P.Harsha P.Hatami S.Kopparty andM.Kumar On multilinear forms: bias correlation and tensor rank Approximation Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020) 2020 pp.29:1–29:23 arXiv:1804.09124 DOI10.4230/LIPIcs.APPROX/RANDOM.2020.29.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3