Spectral large deviations of sparse random matrices

Author:

Ganguly Shirshendu1,Hiesmayr Ella1,Nam Kyeongsik2

Affiliation:

1. Department of Statistics University of California Berkeley California USA

2. Department of Mathematical Sciences KAIST Daejeon South Korea

Abstract

AbstractEigenvalues of Wigner matrices has been a major topic of investigation. A particularly important subclass of such random matrices, useful in many applications, are what are known as sparse or diluted random matrices, where each entry in a Wigner matrix is multiplied by an independent Bernoulli random variable with mean . Alternatively, such a matrix can be viewed as the adjacency matrix of an Erdős–Rényi graph equipped with independent and identically distributed (i.i.d.) edge‐weights. An observable of particular interest is the largest eigenvalue. In this paper, we study the large deviations behavior of the largest eigenvalue of such matrices, a topic that has received considerable attention over the years. While certain techniques have been devised for the case when is fixed or perhaps going to zero not too fast with the matrix size, we focus on the case , that is, constant average degree regime of sparsity, which is a central example due to its connections to many models in statistical mechanics and other applications. Most known techniques break down in this regime and even the typical behavior of the spectrum of such random matrices is not very well understood. So far, results were known only for the Erdős–Rényi graph without edge‐weights and with Gaussian edge‐weights. In the present article, we consider the effect of general weight distributions. More specifically, we consider entry distributions whose tail probabilities decay at rate with , where the regimes and correspond to tails heavier and lighter than the Gaussian tail, respectively. While in many natural settings the large deviations behavior is expected to depend crucially on the entry distribution, we establish a surprising and rare universal behavior showing that this is not the case when . In contrast, in the case, the large deviation rate function is no longer universal and is given by the solution to a variational problem, the description of which involves a generalization of the Motzkin–Straus theorem, a classical result from spectral graph theory. As a byproduct of our large deviation results, we also establish the law of large numbers behavior for the largest eigenvalue, which also seems to be new and difficult to obtain using existing methods. In particular, we show that the typical value of the largest eigenvalue exhibits a phase transition at , that is, corresponding to the Gaussian distribution.

Funder

National Science Foundation

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3