Affiliation:
1. Department of Mathematics University of Arizona Tucson Arizona USA
2. Department of Mathematics University of Toronto Toronto Canada
Abstract
AbstractThe pentagram map on polygons in the projective plane was introduced by R. Schwartz in 1992 and is by now one of the most popular and classical discrete integrable systems. In the present paper we introduce and prove integrability of long‐diagonal pentagram maps on polygons in , by now the most universal pentagram‐type map encompassing all known integrable cases. We also establish an equivalence of long‐diagonal and bi‐diagonal maps and present a simple self‐contained construction of the Lax form for both. Finally, we prove that the continuous limit of all these maps is equivalent to the ‐KdV equation, generalizing the Boussinesq equation for .
Funder
National Science Foundation
Natural Sciences and Engineering Research Council of Canada
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献