Affiliation:
1. Dipartimento di Matematica Università di Bologna Bologna Italy
2. Fakultät für Mathematik und Physik, Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover Hanover Germany
Abstract
AbstractWe call a poset factorable if its characteristic polynomial has all positive integer roots. Inspired by inductive and divisional freeness of a central hyperplane arrangement, we introduce and study the notion of inductive posets and their superclass of divisional posets. It then motivates us to define the so‐called inductive and divisional abelian (Lie group) arrangements, whose posets of layers serve as the main examples of our posets. Our first main result is that every divisional poset is factorable. Our second main result shows that the class of inductive posets contains strictly supersolvable posets, the notion recently introduced due to Bibby and Delucchi (2022). This result can be regarded as an extension of a classical result due to Jambu and Terao (Adv. in Math. 52 (1984) 248–258), which asserts that every supersolvable hyperplane arrangement is inductively free. Our third main result is an application to toric arrangements, which states that the toric arrangement defined by an arbitrary ideal of a root system of type , or with respect to the root lattice is inductive.
Funder
Alexander von Humboldt-Stiftung
Reference34 articles.
1. Divisionally free arrangements of hyperplanes
2. The freeness of ideal subarrangements of Weyl arrangements
3. On Free Deformations of the Braid Arrangement
4. C.Bibby Matroid schemes and geometric posets arXiv:https://arxiv.org/abs/2203.15094 2022.
5. C.BibbyandE.Delucchi Supersolvable posets and fiber‐type abelian arrangements arXiv:https://arxiv.org/abs/2202.11996 2022.