Inductive and divisional posets

Author:

Pagaria Roberto1,Pismataro Maddalena1,Tran Tan Nhat2,Vecchi Lorenzo1

Affiliation:

1. Dipartimento di Matematica Università di Bologna Bologna Italy

2. Fakultät für Mathematik und Physik, Institut für Algebra, Zahlentheorie und Diskrete Mathematik Leibniz Universität Hannover Hanover Germany

Abstract

AbstractWe call a poset factorable if its characteristic polynomial has all positive integer roots. Inspired by inductive and divisional freeness of a central hyperplane arrangement, we introduce and study the notion of inductive posets and their superclass of divisional posets. It then motivates us to define the so‐called inductive and divisional abelian (Lie group) arrangements, whose posets of layers serve as the main examples of our posets. Our first main result is that every divisional poset is factorable. Our second main result shows that the class of inductive posets contains strictly supersolvable posets, the notion recently introduced due to Bibby and Delucchi (2022). This result can be regarded as an extension of a classical result due to Jambu and Terao (Adv. in Math. 52 (1984) 248–258), which asserts that every supersolvable hyperplane arrangement is inductively free. Our third main result is an application to toric arrangements, which states that the toric arrangement defined by an arbitrary ideal of a root system of type , or with respect to the root lattice is inductive.

Funder

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

General Mathematics

Reference34 articles.

1. Divisionally free arrangements of hyperplanes

2. The freeness of ideal subarrangements of Weyl arrangements

3. On Free Deformations of the Braid Arrangement

4. C.Bibby Matroid schemes and geometric posets arXiv:https://arxiv.org/abs/2203.15094 2022.

5. C.BibbyandE.Delucchi Supersolvable posets and fiber‐type abelian arrangements arXiv:https://arxiv.org/abs/2202.11996 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3