Quantitative bounds on vortex fluctuations in 2d$2d$ Coulomb gas and maximum of the integer‐valued Gaussian free field

Author:

Garban Christophe12,Sepúlveda Avelio3

Affiliation:

1. Université Claude Bernard Lyon 1 CNRS UMR 5208 Institut Camille Jordan Villeurbanne France

2. Institut Universitaire de France (IUF) France

3. Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático Universidad de Chile, UMI‐CNRS 2807, Beauchef Santiago Chile

Abstract

AbstractIn this paper, we study the influence of the vortices on the fluctuations of systems such as the Coulomb gas, the Villain model, or the integer‐valued Gaussian free field (GFF). In the case of the Villain model, we prove that the fluctuations induced by the vortices are at least of the same order of magnitude as the ones produced by the spin wave. We obtain the following quantitative upper bound on the two‐point correlation in when The proof is entirely nonperturbative. Furthermore, it provides a new and algorithmically efficient way of sampling the Coulomb gas. For the Coulomb gas, we obtain the following lower bound on its fluctuations at high inverse temperature: This estimate coincides with the predictions based on Renormalization group (RG) analysis by José et al. [Phys. Rev. B 16 (1977), no. 3, 1217] and suggests that the Coulomb potential at inverse temperature should scale like a GFF of inverse temperature of order .Finally, we transfer the above vortex fluctuations via a duality identity to the integer‐valued GFF by showing that its maximum deviates in a quantitative way from the maximum of a usual GFF. More precisely, we show that with high probability when where is an integer‐valued GFF in the box at inverse temperature . Applications to the free energies of the Coulomb gas, the Villain model, and the integer‐valued GFF are also considered.

Funder

European Research Council

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Wiley

Subject

General Mathematics

Reference58 articles.

1. M.Aizenman M.Harel R.Peled andJ.Shapiro Depinning in the integer‐valued Gaussian field and the bkt phase of the 2d villain model arXiv preprint arXiv:2110.09498 2021.

2. Fluctuations of eigenvalues of random normal matrices

3. Quantitative Stochastic Homogenization and Large-Scale Regularity

4. J.Aru The geometry of the gaussian free field combined with SLE processes and the KPZ relation Ph.D. thesis Ecole Normale Supérieure de Lyon 2015.

5. R.Bauerschmidt Ferromagnetic spin systems Lecture notes available athttp://www.statslab.cam.ac.uk/~rb812/doc/spin.pdf 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3