Affiliation:
1. ETH Zürich Zürich Switzerland
2. Institut Fourier Saint‐Martin‐d'Hères France
Abstract
AbstractConsider critical Bernoulli percolation in the plane. We give a new proof of the sharp noise sensitivity theorem shown by Garban, Pete, and Schramm (Acta Math. 205 (2010), 19–104). Contrary to the previous approaches, we do not use any spectral tool. We rather study differential inequalities satisfied by a dynamical four‐arm event, in the spirit of Kesten's proof of scaling relations in Kesten (Comm. Math. Phys. 109 (1987), 109–156). We also obtain new results in dynamical percolation. In particular, we prove that the Hausdorff dimension of the set of times with both primal and dual percolation equals almost surely.
Funder
Horizon 2020 Framework Programme
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献