Tropical fans and the moduli spaces of tropical curves

Author:

Gathmann Andreas,Kerber Michael,Markwig Hannah

Abstract

AbstractWe give a rigorous definition of tropical fans (the ‘local building blocks for tropical varieties’) and their morphisms. For a morphism of tropical fans of the same dimension we show that the number of inverse images (counted with suitable tropical multiplicities) of a point in the target does not depend on the chosen point; a statement that can be viewed as one of the important first steps of tropical intersection theory. As an application we consider the moduli spaces of rational tropical curves (both abstract and in some ℝr) together with the evaluation and forgetful morphisms. Using our results this gives new, easy and unified proofs of various tropical independence statements, e.g. of the fact that the numbers of rational tropical curves (in any ℝr) through given points are independent of the points.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference11 articles.

1. The tropical Grassmannian

2. [6] Mikhalkin G. , Tropical geometry and its applications, in Proc. int. conf. on mathematics, Madrid, Spain, 2006, 827–852 (math.AG/0601041).

3. [9] Speyer D. , Tropical geometry, PhD thesis, University of California, Berkeley, CA (2005).

4. [7] Mikhalkin G. , Moduli spaces of rational tropical curves, in Proc. Gökova geometry-topology conf. (GGT), Gökova, 2007, 39–51 (arXiv/0704.0839).

5. Computing tropical varieties

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiring isomorphisms between rational function semifields of tropical curves;Journal of Pure and Applied Algebra;2024-09

2. Genus 0 logarithmic and tropical fixed‐domain counts for Hirzebruch surfaces;Journal of the London Mathematical Society;2024-03-27

3. Logarithmic Gromov–Witten theory and double ramification cycles;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-30

4. Tropical Moduli Spaces of Rational Graphically Stable Curves;The Electronic Journal of Combinatorics;2023-12-15

5. A sheaf-theoretic approach to tropical homology;Journal of Algebra;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3