Higher-rank Bohr sets and multiplicative diophantine approximation

Author:

Chow Sam,Technau Niclas

Abstract

Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that holds for almost all tuples of real numbers. We provide a fibre refinement, solving a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was only known on the plane, as previous approaches relied heavily on the theory of continued fractions. Using reduced successive minima in lieu of continued fractions, we develop the structural theory of Bohr sets of arbitrary rank, in the context of diophantine approximation. In addition, we generalise the theory and result to the inhomogeneous setting. To deal with this inhomogeneity, we employ diophantine transference inequalities in lieu of the three distance theorem.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference34 articles.

1. A Fourier analytic approach to inhomogeneous Diophantine approximation;Yu;Acta Arith.

2. The Cauchy-Schwarz Master Class

3. [Ram17b] F. Ramírez , Khintchine’s theorem with random fractions, Mathematika, to appear. Preprint (2017), arXiv:1708.02874.

4. Counterexamples, covering systems, and zero-one laws for inhomogeneous approximation

5. John-type theorems for generalized arithmetic progressions and iterated sumsets

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dispersion and Littlewood's conjecture;Advances in Mathematics;2024-06

2. Littlewood and Duffin–Schaeffer-Type Problems in Diophantine Approximation;Memoirs of the American Mathematical Society;2024-04

3. Effective equidistribution for multiplicative Diophantine approximation on lines;Inventiones mathematicae;2023-12-08

4. JARNÍK TYPE THEOREMS ON MANIFOLDS;Bulletin of the Australian Mathematical Society;2023-04-25

5. The divergence Borel–Cantelli Lemma revisited;Journal of Mathematical Analysis and Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3