The Hanna Neumann conjecture for surface groups

Author:

Antolín Yago,Jaikin-Zapirain Andrei

Abstract

The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference54 articles.

1. L2-Invariants: Theory and Applications to Geometry and K-Theory

2. Dic11 Dicks, W. , Simplified Mineyev, Preprint (2011), http://mat.uab.es/~dicks.

3. Jai20 Jaikin-Zapirain, A. , Free $\mathbb {Q}$ -groups are residually torsion-free nilpotent, Preprint (2020), http://matematicas.uam.es/andrei.jaikin/preprints/baumslag.pdf.

4. Conjugacy Separability of Amalgamated Free Products of Groups

5. From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtually Free-by-Cyclic Groups;Geometric and Functional Analysis;2024-07-22

2. Dependence over subgroups of free groups;International Journal of Algebra and Computation;2024-05-15

3. An algorithm to recognize echelon subgroups of a free group;International Journal of Algebra and Computation;2024-04-30

4. Explicit bounds for fixed subgroups of endomorphisms of free products;Journal of Algebra;2023-11

5. On double coset separability and the Wilson–Zalesskii property;Bulletin of the London Mathematical Society;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3