Double affine Hecke algebras and generalized Jones polynomials

Author:

Berest Yuri,Samuelson Peter

Abstract

In this paper we propose and discuss implications of a general conjecture that there is a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K\subset S^{3}$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct three-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies that the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference53 articles.

1. Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra;Koornwinder;SIGMA Symmetry Integrability Geom. Methods Appl.,2008

2. [Sam12] P. Samuelson , Kauffman bracket skein modules and the quantum torus, PhD thesis, Cornell University (2012).

3. Double Affine Hecke Algebras and Macdonald's Conjectures

4. Knots are determined by their complements

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong Positivity for the Skein Algebras of the 4-Punctured Sphere and of the 1-Punctured Torus;Communications in Mathematical Physics;2022-11-19

2. Chaos and integrability in -geometry;Russian Mathematical Surveys;2021-08-01

3. On the genus two skein algebra;Journal of the London Mathematical Society;2021-07-22

4. Cyclotomic expansion of generalized Jones polynomials;Letters in Mathematical Physics;2021-03-19

5. On dualizability of braided tensor categories;Compositio Mathematica;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3