Ganglionic eminence within the early developing brain visualized by 3D transvaginal ultrasound

Author:

Boitor-Borza Dan,Kovacs Tunde,Stamatian Florin

Abstract

Aim: Early diagnosis of cerebral congenital anomalies requires a profound knowledge of the anatomy of the developing human brain. The ganglionic eminences (GE) are crucial structures of the brain, giving rise mostly to the basal nuclei. The aim of this explorative study is to assess the GE within the embryonic and early fetal brain by using 3D transvaginal US. Material and methods: From March 2015 to May 2015, a total of 18 singleton non-malformed embryos and fetuses at 9-13 weeks of gestation were assesed in vivo by transvaginal ultrasound using a Voluson E10, BT 15 scanner (GE Healthcare, Zipf, Austria). The 3D sonography was performed routinely as the subjects were scanned. Inter-observer agreement (concordance) was calculated using the Cohen’s kappa statistics. Results: At 9 gestational weeks, no GE was identified. At 10 gestational weeks the GE were identified as mere thickenings in the lateral wall of the cerebral hemispheres, well depicted by 3D transvaginal ultrasound using the HDlive rendering mode and the OmniView® software. Starting with 11 gestational weeks the GE are evident. The results of inter-observer agreement for GE identification were as follows: observed agreement Po=0.94, expected agreement Pe=0.76, kappa coefficient=0.83, which means a very good agreement between the observers. Conclusions: The GE can be clearly visualized by 3D transvaginal sonography, and especially by HDlive rendering mode. This method has become the “golden standard” for in vivo morphological studies of the embryonic and early fetal brain.

Publisher

SRUMB - Romanian Society for Ultrasonography in Medicine and Biology

Subject

Acoustics and Ultrasonics,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3