Room Temperature Synthesis of Monodisperse ZnO Nanoparticles Using Ultrasonically Atomized Precursor Mist in Simple Chemical Route

Author:

Abstract

Monodisperse zinc oxide (ZnO) nanoparticles were synthesized using ultrasonically atomized precursor mist in simple chemical route at low temperature. Analytical grade sodium hydroxide and zinc chloride were dissolved in 100 ml methanol. Zinc chloride precursor solution was converted into very fine mist (atomized) using a nozzle (Sono-Tek Corporation, U.S.A.) operated at ultrasonic frequency of 120 KHz. Fine mist droplets were added slowly (50ml/ hour) into sodium hydroxide solution in 2 hours. The NaOH solution in beaker turned slowly into white product due to addition of zinc chloride. The white product was kept in constant temperature bath at 90°C for 3 hours. The white product was washed five times using double distill water and dried in oven for 2 hours. Different powder samples were synthesized using same procedure by changing the molarity of sodium hydroxide keeping the molarity of zinc chloride and other preparative conditions same. The structural, microstructural, thermal and optical properties of fine powders were analyzed using X Ray Diffractometer, Scanning Electron Microscopy, Simultaneous Thermal Analyzer, UV-Vis Spectroscopy and Photoluminescence Spectroscopy. Fine ZnO nanorods, elongated and spherical nanoparticles were observed due to change in molarity of NaOH. The results are discussed and interpreted.

Publisher

Opast Group LLC

Reference153 articles.

1. 1. Dabrowski B, Zaleska A, Janczarek M, Hupka J, Miller JD

2. (2002) Photo-oxidation of dissolved cyanide using TiO2

3. catalyst.

4. J Photochem Photobiol A Chem 8: 201-205.

5. 2. Kobayashi H, Liu YL, Yamashita Y, Ivanco J, Imai S, et al. (2006)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3