The development and validation of a novel deep-learning algorithm to predict in-hospital cardiac arrest in ED-ICU (emergency department-based intensive care units): a single center retrospective cohort study

Author:

Abstract

Over recent years, the escalation of patient volumes in emergency departments (ED) worldwide has posed to the delivery of timely critical care. Intensive Care Unit (ICU) services became essential due to increasing acuity in EDs, and previous studies revealed a strong association between prolonged boarding times and unfavorable outcomes. Innovative strategies such as Emergency Department-based Intensive Care Units (ED-ICUs) have been introduced to optimize critical care delivery. Given the higher acuity and mortality rates in ED-ICU patients, the prediction of certain events, such as In-Hospital Cardiac Arrest (IHCA), has become abstruse. Conventional Early Warning Scores (EWSs) were developed to stratify the risk of conventional ICUs, but have never been validated in ED-ICU patients with higher acuity. Moreover, EWSs are predominantly focused on forecasting mortality and lack capability for real-time prediction. Our study aimed to develop and validate a deep-learning-based model to predict IHCA within 24 h in ED-ICU. We included 1975 patients admitted to ED-ICU. The study period was from 01 January 2019 to 31 December 2020. Our model, the Deep-ICU CMS (Central Monitoring System), uses four classic vital signs (blood pressure, heart rate, respiratory rate, and body temperature) as input. The model outperformed conventional EWSs in predicting IHCA and maintained performance even with extended prediction windows; it provided robust prediction within a 24-h window, setting it apart from models with restricted prediction horizons. It achieved notably high sensitivity and specificity, overcoming the alarm fatigue issue that is common in EWSs. This study pioneered IHCA risk stratification in ED-ICU and showcases Deep-ICU CMS as a robust prediction tool that overcomes the limitations of conventional EWSs. Prospective and external validation are now warranted to confirm the impact of Deep-ICU CMS in real-world practice. Given the scarcity of research in ED-ICU, our findings contribute valuable insights to optimizing critical care delivery.

Publisher

MRE Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3