Calciolangbeinite-O, a natural orthorhombic modification of K2Ca2(SO4)3, and the langbeinite–calciolangbeinite solid-solution system

Author:

Pekov Igor V.,Zubkova Natalia V.,Galuskina Irina O.ORCID,Kusz Joachim,Koshlyakova Natalia N.,Galuskin Evgeny V.ORCID,Belakovskiy Dmitry I.,Bulakh Maria O.,Vigasina Marina F.,Chukanov Nikita V.,Britvin Sergey N.,Sidorov Evgeny G.,Vapnik Yevgeny,Pushcharovsky Dmitry Yu.

Abstract

AbstractCalciolangbeinite, ideally K2Ca2(SO4)3, exists in two modifications, cubic and, first described in the present paper, orthorhombic. They are topologically-similar polymorphs which can be designated as calciolangbeinite-C and calciolangbeinite-O. Calciolangbeinite-O is the first natural orthorhombic langbeinite-like sulfate. It clearly differs from calciolangbeinite-C in the powder X-ray diffraction pattern, optical data and Raman spectrum. Calciolangbeinite-O is found in sublimates of the active Arsenatnaya fumarole at the Tolbachik volcano, Kamchatka, Far Eastern Region, Russia and in pyrometamorphic rocks of the Hatrurim Complex at Jabel Harmun, Judean Desert, Palestinian Autonomy and Har Parsa, Negev Desert, both in Israel. Calciolangbeinite-C is known only in fumarole sublimates at Tolbachik. Calciolangbeinite forms a continuous solid-solution system with langbeinite K2Mg2(SO4)3. The majority of the system is represented by cubic phases, and only members with compositions K2(Ca2.0–1.9Mg0.0–0.1)(SO4)3 have orthorhombic symmetry under room-temperature conditions. The crystal structure of calciolangbeinite-O was studied on a single crystal, chemically very close to K2Ca2(SO4)3, from Tolbachik (R1 = 2.75%). The unit-cell parameters are: a = 10.3330(2), b = 10.5027(2), c = 10.1763(2) Å, V = 1104.37(4) Å3 and Z = 4; space group is P212121. Calciolangbeinite-O is a low-temperature modification of K2Ca2(SO4)3 belonging to the K2Cd2(SO4)3 structure type whereas calciolangbeinite-C (space group P213), a high-temperature modification, has the langbeinite-type structure. The significant Mg admixture in calciolangbeinite-C from Tolbachik probably stabilises its cubic structure at room temperature. In both high-temperature fumaroles and pyrometamorphic rocks calciolangbeinite crystallises in the cubic modification, and during cooling its chemical variety close to the end-member K2Ca2(SO4)3 undergoes phase transition to calciolangbeinite-O, whereas the Mg-enriched varieties of the mineral remain calciolangbeinite-C.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3