The structure hierarchy hypothesis

Author:

Hawthorne F. C.

Abstract

AbstractThe structure hierarchy hypothesis states that structures may be ordered hierarchically according to the polymerization of coordination polyhedra of higher bond valence. A mathematical hierarchy is an ordered set of elements where the ordering reflects a natural hierarchical relation between (or arrangement of) the elements. Here, I review the structure hierarchies for the borate, uranyl oxide, phosphate, sulfate, beryllate and oxide-centred Cu, Pb and Hg minerals (plus synthetics where appropriate). Structure hierarchies have two functions: (1) they serve to organize our knowledge of minerals (crystal structures) in a coherent manner; (2) if the basis of the classification involves factors that are related to the mechanistic details of the stability and behaviour of minerals, then the physical, chemical and paragenetic characteristics of minerals should arise as natural consequences of their crystal structures and the interaction of those structures with the environment in which they occur. We may justify the structure hierarchy hypothesis by considering a hypothetical structure-building process whereby higher bond-valence polyhedra polymerize to form the structural unit. The clusters constituting the FBBs (fundamental building blocks) may polymerize to form the following types of structural unit: (1) isolated polyhedra; (2) clusters; (3) chains and ribbons; (4) sheets; and (5) frameworks. The major advantage of this approach to structure hierarchy is the fact that the hypothetical structure-building process outlined above resembles (our ideas of) crystallization from an aqueous solution, whereby complexes in aqueous and hydrothermal solutions condense to form crystal structures, or fragments of linked polyhedra in a magma condense to form a crystal. Although our knowledge of these processes is rather vague from a mechanistic perspective, the foundations of the structure hypothesis give us a framework within which to think about the processes of crystallization and dissolution.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3