Determination of the tegengrenite superstructure: another case of tetrahedral Mn3+ in spinel-type minerals?

Author:

Bonazzi Paola,Bindi Luca

Abstract

AbstractThe crystal structure of the spinel-related, Sb mineral tegengrenite from the Filipstad district, Värmland, Sweden, has been solved in the space group R3 [a = 16.0285(9), c = 14.8144(8) Å, V = 3296.1(3) Å3, Z = 42] and refined up to R = 0.0484 for 3589 reflections with Fo > 4σ(Fo). Tegengrenite exhibits a rhombohedrally distorted spinel-type structure with cations occupying 1/8 of the tetrahedral (T) and 1/2 of the octahedral (M) interstices of a nearly regular cubic close-packing of oxygen atoms. Due to the cation ordering, which leads to a complex superstructure with a unit-cell volume of 21/4 that of a common spinel, the M and T sites of the spinel-type structure split into ten and six independent sites, respectively. Chemical composition determined by electron microprobe led to the empirical formula Mg1.26Mn0.852+Zn0.04Mn0.193+Al0.01Si0.12Ti0.03Sb0.505+O4, on the assumption that no vacancies occur in the mineral (Σcat = 3.00 and Σcharge = 8.00 per formula unit). Crystal-chemical considerations indicate that octahedra are occupied mainly by Mg, Mn3+ and Sb5+ (+Al, + Ti), whereas tetrahedra are filled mainly by Mn2+ and Mg (+Zn) with Si ordered in a specific site. However, the structure refinement shows a low site-scattering factor for one octahedral site, implying substantial vacancies and a larger overall mean Mn valence than stated above. Long mean distances also suggest some Mn2+ on octahedral sites. Together, these observations necessitate the presence of substantial Mn3+ on tetrahedral sites.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nomenclature and classification of the spinel supergroup;European Journal of Mineralogy;2019-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3