Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites

Author:

Hillier S.,Velde B.

Abstract

AbstractThe chemical composition of about 500 diagenetic chlorites, determined by electron microprobe, has been studied in six different sedimentary sequences spanning conditions from early diagenesis to low-grade metamorphism, in the temperature range 40–330°C. The range of Fe/(Fe + Mg) is almost complete and is positively correlated with Al. Five sequences show the same compositional variation. In each, the most siliceous chlorites have the lowest R2+, substantially more octahedral than tetrahedral Al, and the lowest octahedral totals. Conversely, the least siliceous have the highest R2+, nearly equal octahedral and tetrahedral Al, and octahedral totals close to that for an ideal trioctahedral mineral. A dioctahedral substitution Si[]R2−2 (where [] represents a vacant octahedral site) which decreases with temperature, describes this variation. Low octahedral totals are, however, induced by the method of calculation and need not indicate vacancies; for published wet chemical analyses of metamorphic chlorites they may simply indicate oxidation of Fe. Intergrown dioctahedral phyllosilicates may partly account for apparent vacancies in diagenetic chlorites. Nevertheless, the correlation of composition with temperature and similarities to the temperature-related evolution of synthetic chlorites, suggest that diagenetic chlorites are compositionally distinct from, but metastable with respect to, fully trioctahedral metamorphic chlorites. Temperature-related trends are modified by bulk composition, complicating their potential use for low-temperature geothermometry.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3