Microwave irradiation used for all steps of pre-pillaring Al-montmorillonite

Author:

Yapar S.,Torres Sánchez R. M.,Emreol M.,Weidler P.,Emmerich K.

Abstract

AbstractIn this study, a new procedure for the synthesis of pillared clays is proposed. Ageing processes and intercalation reactions were carried out using microwave irradiation in order to decrease the consumption of three industrially-important parameters; time, water consumption and energy. The effects of microwave irradiation, the amount of Al and the Al3+/clay ratio on the physicochemical properties of Al-pillared montmorillonites were investigated. The structural changes, depending on the intercalation and microwave irradiation, were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM) analyses and by measuring the specific surface area and pore-size distribution. Additionally, simultaneous thermal analyses (STA) and zeta potential measurements were carried out to determine physicochemical properties. According to the XRD measurements, the d001 value of microwave-irradiated samples is not affected by the amount of Al and the Al3+/clay ratio; microwave irradiation causes a 0.20 nm contraction in the d001 value in comparison to that of a conventionally pillared sample. The results of FTIR analyses reveal that the intensity of peaks assigned to Keggin-OH and Keggin-H2O stretches is diminished in the case of microwave-irradiated samples. The STA analyses indicate that the amount of water released during dehydroxylation is decreased in the case of microwave-irradiated samples. By considering the contraction in d001 values and the decreases in Keggin-stretching bands and also in the amount of dehydroxylation water, it was concluded that microwave irradiation has a calcination effect.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3