Electro-fluorescence studies of the binding of fluorescent dyes to sepiolite

Author:

Windsor S. A.,Harrison N. J.,Tinker M. H.

Abstract

AbstractAqueous suspensions of sepiolite, tagged with fluorescent dyes, have been studied using electro-fluorescence polarization spectroscopy. The binding modes of some 37 fluorescent dyes and optical brightening agents to the rod-like sepiolite particles have been determined. Many of the dyes are found to bind with a degree of order to the clay particle's major axis. The binding geometries of the cationic dye molecules tested were found to be dependent upon molecular size. This supports the view that these cationic dye molecules are constrained within the channels which are characteristic of the mineral sepiolite. Results for uncharged and anionic dye molecules are also presented; no dependence of binding geometry upon molecular size was found. The anionic molecules are most likely to associate with the exterior cationic magnesium surface. The results indicate that some of the anionic dyes are too large to fit in the channels. Some of the uncharged molecules adopt a number of orientations upon binding which gives rise to an average geometry being observed for these dyes.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 21;Handbook of Fluorescent Dyes and Probes;2015-05-15

2. Preparation of light-stable micelles with azo dyes from a nonamphiphilic random block copolymer;Colloid and Polymer Science;2005-03-12

3. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2001-05

4. Electric linear dichroism. A powerful method for the ionic chromophore–colloid system as exemplified by dye and montmorillonite suspensions;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2000-12

5. Electro-fluorescence polarization studies of the interaction of fluorescent dyes with clay minerals in suspensions;Colloids and Surfaces A: Physicochemical and Engineering Aspects;1999-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3