Hyalotekite, (Ba,Pb,K)4(Ca,Y)2Si8(B,Be)2(Si,B)2O28F, a tectosilicate related to scapolite: new structure refinement, phase transitions and a short-range ordered 3b superstructure

Author:

Christy A. G.,Grew E. S.,Mayo S. C.,Yates M. G.,Belakovskiy D. I.

Abstract

AbstractHyalotekite, a framework silicate of composition (Ba,Pb,K)4(Ca,Y)2Si8(B,Be)2 (Si,B)28F, is found in relatively high-temperature (⩾ 500°C) Mn skarns at Långban, Sweden, and peralkaline pegmatites at Dara-i-Pioz, Tajikistan. A new paragenesis at Dara-i-Pioz is pegmatite consisting of the Ba borosilicates leucosphenite and tienshanite, as well as caesium kupletskite, aegirine, pyrochlore, microcline and quartz. Hyalotekite has been partially replaced by barylite and danburite. This hyalotekite contains 1.29–1.78 wt.% Y2O3, equivalent to 0.172–0.238 Y pfu or 8–11% Y on the Ca site; its Pb/(Pb+Ba) ratio ranges 0.36–0.44. Electron microprobe F contents of Långban and Dara-i-Pioz hyalotekite range 1.04–1.45 wt.%, consistent with full occupancy of the F site. A new refinement of the structure factor data used in the original structural determination of a Långban hyalotekite resulted in a structural formula, (Pbl.96Bal.86K0.18)Ca2(B1.76Be0.24)(Sil.56B0.44)Si8O28F, consistent with chemical data and all cations with positive-definite thermal parameters, although with a slight excess of positive charge (+57.14 as opposed to the ideal +57.00). An unusual feature of the hyalotekite framework is that 4 of 28 oxygens are non-bridging; by merging these 4 oxygens into two, the framework topology of scapolite is obtained. The triclinic symmetry of hyalotekite observed at room temperature is obtained from a hypothetical tetragonal parent structure via a sequence of displacive phase transitions. Some of these transitions are associated with cation ordering, either Pb–Ba ordering in the large cation sites, or B–Be and Si–B ordering on tetrahedral sites. Others are largely displacive but affect the coordination of the large cations (Pb, Ba, K, Ca). High-resolution electron microscopy suggests that the undulatory extinction characteristic of hyalotekite is due to a fine mosaic microstructure. This suggests that at least one of these transitions occurs in nature during cooling, and that it is first order with a large volume change. A diffuse superstructure observed by electron diffraction implies the existence of a further stage of short-range cation ordering which probably involves both (Pb,K)–Ba and (BeSi,BB)–BSi.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3