Supercooling and the crystallization of plagioclase from a basaltic magma

Author:

Gibb Fergus G. F.

Abstract

SummaryThe liquidus temperature (1198 °C) and equilibrium phase relations of a sample of Columbia River basalt from the Picture Gorge section have been determined at I atmosphere by heating in a controlled atmosphere. When this basalt is cooled from above its liquidus temperature the liquidus phase (plagioclase) may fail to crystallize depending on the degree of undercooling and the duration of the experiment. A field in temperature-time space in which plagioclase fails to crystallize on cooling is separated from another in which plagioclase always crystallizes by a third in which the nucleation of plagioclase is unpredictable in terms of temperature and time. The extent to which this basaltic liquid can be supercooled without the crystallization of plagioclase is independent of the time it is held above the liquidus or the temperature in excess of the liquidus to which it is heated.The exceptionally long times required to ensure the nucleation of plagioclase at or near the liquidus temperature suggest that many so-called ‘equilibrium’ phase relations determined from experiments of a few hours' duration could be in serious error if the ‘equilibration’ involves a nucleation process.It is demonstrated that, over a range of cooling rates, the temperature at which plagioclase begins to crystallize on cooling varies markedly and the temperature and times required for both possible and certain nucleation of plagioclase are calculated for a range of constant cooling rates. The range of cooling rates over which the nucleation temperature of plagioclase varies is likely to occur in nature only in certain lava flows and small minor intrusions. In such cases this could lead to changes in the order in which the minerals appear on cooling and other petrologically significant effects.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3