Abstract
AbstractFluorapatite with monazite-(Ce) and xenotime-(Y) microinclusions occurs in the lithium–caesium–tantalum pegmatite body A of the Volta Grande mine, Minas Gerais state, Southeast Brazil. The fluorapatite displays faint zoning, detected mainly by cathodoluminescence. Electron probe and laser ablation analyses indicate that zoning in the fluorapatite corresponds to variation in Mn and rare-earth element (REE) content. Such compositional variation is attributed to partial removal of the REE from the fluorapatite structure during a dissolution–reprecipitation process, forming monazite-(Ce) and xenotime-(Y) microinclusions in the REE-depleted zones of the fluorapatite. These inclusions exhibit an inherited geochemical signature, manifested by low Th and U concentrations when compared to monazite and xenotime crystallised from melts. Rhodochrosite and calcite inclusions are also associated with monazite-(Ce) and xenotime-(Y) and are probably products of the same process, recycling Ca, Mn, and CO32− from the fluorapatite through the following reaction: [Ca(5–2a–b–½x),Naa,(Y + REE)a,Mnb][(PO4)3–x(CO3)x(F)] + Fluid[a(2Ca2+ + P5+) + (x–b)(Ca2+) + H2O)] → [Ca5(PO4)3(F,OH)] + a[(Y + REE)PO4] + b[Mn(CO3)] + (x–b)[Ca(CO3)] + Fluid a[Na+].On the basis of new fluid-inclusion analyses, we propose that a hot (T > 204.5°C), salty (16 wt.% eq. NaCl, attributed to LiCl), hydrous fluid mediated the dissolution–reprecipitation of the fluorapatite. This fluid corresponds to similarly described Li-rich fluids which were suggested to have re-equilibrated the mineralogical assemblage at the Volta Grande mine.
Subject
Geochemistry and Petrology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献