Firn air depletion as a precursor of Antarctic ice-shelf collapse

Author:

Kuipers Munneke Peter,Ligtenberg Stefan R.M.,Van Den Broeke Michiel R.,Vaughan David G.

Abstract

AbstractSince the 1970s, the sudden, rapid collapse of 20% of ice shelves on the Antarctic Peninsula has led to large-scale thinning and acceleration of its tributary glaciers. The leading hypothesis for the collapse of most of these ice shelves is the process of hydrofracturing, whereby a water-filled crevasse is opened by the hydrostatic pressure acting at the crevasse tip. This process has been linked to observed atmospheric warming through the increased supply of meltwater. Importantly, the low-density firn layer near the ice-shelf surface, providing a porous medium in which meltwater can percolate and refreeze, has to be filled in with refrozen meltwater first, before hydrofracturing can occur at all. Here we build upon this notion of firn air depletion as a precursor of ice-shelf collapse, by using a firn model to show that pore space was depleted in the firn layer on former ice shelves, which enabled their collapse due to hydrofracturing. Two climate scenario runs with the same model indicate that during the 21st century most Antarctic Peninsula ice shelves, and some minor ice shelves elsewhere, are more likely to become susceptible to collapse following firn air depletion. If warming continues into the 22nd century, similar depletion will become widespread on ice shelves around East Antarctica. Our model further suggests that a projected increase in snowfall will protect the Ross and Filchner–Ronne Ice Shelves from hydrofracturing in the coming two centuries.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3