A Map-plane Finite-element Model: Three Modeling Experiments

Author:

Fastook James L.,Chapman Judith E..

Abstract

AbstractPreliminary results are presented on a solution of the two-dimensional time-dependent continuity equation for mass conservation governing ice-sheet dynamics. The equation is solved using a column-averaged velocity to define the horizontal flux in a finite-element formulation. This yields a map-plane model where flow directions, velocities, and surface elevations are defined by bedrock topography, the accumulation/ablation pattern, and in the time-dependent case by the initial surface configuration. This alleviates the flow-band model limitation that the direction of flow be defined and fixed over the course of the modeling experiment. The ability of the finite-element method to accept elements of different dimensions allows detail to be finely modeled in regions of steep gradients, such as ice streams, while relatively uniform areas, such as areas of sheet flow, can be economically accommodated with much larger elements. Other advantages of the finite-element method include the ability to modify the sliding and/or flow-law relationships without materially affecting the method of solution.Modeling experiments described include a steady-state reconstruction showing flow around a three-dimensional obstacle, as well as a time-dependent simulation demonstrating the response of an ice sheet to a localized decoupling of the bed. The latter experiment simulates the initiation and development of an ice stream in a region originally dominated by sheet flow. Finally, a simulation of the effects of a changing mass-balance pattern, such as might be anticipated from the expected carbon dioxide warming, is described. Potential applications for such a model are also discussed.SYMBOLS USEDa(x,y) Accumulation/ablation rate.A Flow-law parameter.B Sliding-law parameter.CijC Global capacitance matrix.f Fraction of the bed melted.Fij,F Global load vector.g Acceleration of gravity.hj,h Ice-surface elevation.H Ice thickness.k(x,y) Constitutive equation constant of proportionality.kij Global stiffness matrix.m Sliding-law exponent.n Flow-law exponent.ρ Density of ice.σ(x,y) Ice flux.t Time.U Column-average ice velocity.UF Column-average deformation (flow) velocity.US Sliding velocity.v Variational trial function.x,y Map-plane coordinates.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Latest Pleistocene glacial chronology and paleoclimate reconstruction for the East River watershed, Colorado, USA;Quaternary Research;2024-04-12

2. Late Pleistocene glacial chronologies and paleoclimate in the northern Rocky Mountains;Climate of the Past;2022-02-15

3. Principles of Glacier Mechanics;2019-12-05

4. Index;Principles of Glacier Mechanics;2019-12-05

5. References;Principles of Glacier Mechanics;2019-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3