Author:
Moore Peter L.,Iverson Neal R.,Cohen Denis
Abstract
AbstractWhere polythermal glaciers have frozen margins that buttress otherwise temperate-based sliding ice, longitudinal compression can strongly influence ice-flow trajectory, and consequently sediment transport paths. Past efforts to model flow in the vicinity of a basal thermal transition (BTT) have generally relied on simplified boundary conditions or rheological idealizations, making these model results difficult to apply to real glacier termini. Herein, we present results of numerical simulations using a power-law rheology and with boundary conditions that better represent the frozen margin. Model results indicate that a transition to a non-sliding frozen margin causes a decline in surface velocity made possible by upward ice flow, implying either enhanced ablation for steady-state simulations or the formation of a surface bulge. Permitting ice loss by ablation combined with numerical smoothing of the basal slip transition subdues basal stress concentrations and thereby inhibits development of structural discontinuities such as thrust faults. Upward ice flow is accommodated by vertical extension up-glacier of the BTT. This strain regime can potentially account for key structural features in polythermal glacier termini without appealing to thrusting.
Publisher
International Glaciological Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献