Author:
Hori Akira,Hondoh Takeo,Oguro Mitsugu,Lipenkov Vladimir Ya.
Abstract
AbstractWe performed X-ray diffraction measurements on eight ice samples taken between 3200 and 3611 m depth of the Vostok (Antarctica) ice core to observe lattice distortions of ice crystals. Selected samples represent three distinct sections of the core: (i) glacier (meteoric) ice with well-preserved climatic record (down to 3310 m), (ii) ‘shear zone’ at the base of the glacier ice (3450– 3537 m) within which the climatic record is disturbed by ice deformation, and (iii) accretion ice formed by freezing of subglacial Vostok lake waters at the base of the ice sheet (from about 3537 m depth to the bottom of the core). The dislocation density decreases from 1012to 108m–2with increasing depth. In the accretion ice, lattice distortion tends to decrease with depth. However, the dislocation density does not reach a level typical for laboratory-grown columnar ice even at 3610 m. This reflects plastic deformation which accretion ice has undergone after its formation.
Publisher
International Glaciological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献