Author:
Albert Mary R.,Hawley Robert L.
Abstract
AbstractAir–snow transfer processes impact both ice-core interpretation and exchange affecting atmospheric chemistry. An understanding of seasonal differences in the character of the surface snow will facilitate evaluation of possible preferential seasonal exchange of reactive chemical species. Both diffusive processes and advective (ventilation) processes can serve to alter the physical, chemical and isotopic character of snow and firn. In this paper, we examine measurements of surface roughness over the course of a year at Summit, Greenland, and the implications for snow and firn ventilation. At Summit, during the winter-over experiment, summer and fall sastrugi amplitudes were approximately 5 cm and had smoothly curved profiles. the average amplitudes experienced mild increases in January, but by the end of February through March the amplitude increased to approximately 20 cm, and the profiles exhibited more abrupt geometries. Calculations are performed to show the potential impact of the changing roughness on interstitial ventilation rates in the snow, assuming that the permeability profile does not change in time. Under high winds, ventilation velocities in the near-surface snow can be up to 3 cms–1in the winter, compared to 1 cms–1in the summer. the frequency of 12 ms–1winds in the summer, however, is less than in the winter. Under low-wind conditions, the summer roughness causes ventilation rates that are comparable to diffusion rates. However, in winter even 5 ms–1wind conditions can cause the interstitial airflow due to ventilation to exceed the diffusion rates.
Publisher
International Glaciological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献