Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change

Author:

Fujita Koji

Abstract

AbstractNumerical calculations are described, aimed at evaluating the influence of precipitation seasonality (summer and winter) on glacier mass balance. First, equilibrium-line altitudes (ELAs) are modeled using idealized meteorological variables. Modeled climatic conditions (summer mean temperature and annual precipitation) at the ELA of glaciers located within a winter accumulation pattern confirm the observational results of earlier studies. However, the ELA of glaciers located within a summer accumulation climate pattern locates in a colder environment than that of glaciers located within a winter accumulation climate pattern. This difference is mainly due to the annual snow accumulation and the surface albedo. A warming test (+1K) reveals higher sensitivities for the glaciers located within a summer accumulation pattern than for the glaciers located within a winter accumulation pattern. In a humid environment, a significant decrease in snow accumulation on the glaciers located within a summer accumulation pattern directly causes higher sensitivities. In an arid environment, on the other hand, the decreased summer snow induces accelerated melting by lowering the surface albedo and thus increasing absorption of solar radiation on the glaciers located within a summer accumulation pattern. Both influences are due to significant differences in summer precipitation. This study shows the importance of precipitation seasonality on the climatic sensitivity of glacier mass balance, which in previous studies has been linked only with annual precipitation.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3