Efficient Removal of Pb(II) Ion Using Tio2/Zno/Sio2 Nanocomposite from Aqueous Solutions Via Adsorption-Photocatalysis Process
-
Published:2024-05-31
Issue:5
Volume:53
Page:1133-1147
-
ISSN:0126-6039
-
Container-title:Sains Malaysiana
-
language:
-
Short-container-title:JSM
Author:
Hadian Dadan,Alni Anita,Patah Aep,Handayani Nurrahmi,Zulfikar Muhammad Ali
Abstract
This research aims to investigate the usage of a TiO2/ZnO/SiO2 (TZS) composite prepared via a 24-h hydrothermal process at 180° C to remove Pb(II) through adsorption-photocatalysis. Pb(II) exposure has known health risks, making this study significant. The research explores the impact of pH, the nanocomposite quantity, and contact time in the process. Adsorption-photocatalysis was carried out in the dark for 60 min, followed by irradiation with a 160-watt mercury lamp. The adsorption process of Pb(II) ion removal adhered to the pseudo-second-order model regarding kinetics, while the adsorption isotherm corresponded to the Freundlich isotherm. Additionally, the assessment of photocatalysis kinetics showed that the removal of Pb(II) ions followed a pseudo-first-order model, resulting in a 99.58% elimination of Pb(II) ions. Post-adsorption-photocatalytic treatment, a yellowish precipitate was observed. The XRD pattern result of the yellowish precipitate confirmed the presence of PbO as the formed Pb phase. The study concludes that the TiO2/ZnO/SiO2 nanocomposite as adsorbent-photocatalyst is a highly effective, efficient, and promising method to remove Pb(II) contamination from aqueous solutions.
Publisher
Penerbit Universiti Kebangsaan Malaysia (UKM Press)