Streamflow Data Analysis for Flood Detection using Persistent Homology

Author:

Syed Musa Syed Mohamad Sadiq,Md Noorani Mohd Salmi,Abdul Razak Fatimah,Ismail Munira,Alias Mohd Almie

Abstract

Flooding is an environmental hazard that occurs almost everywhere around the world. Analysis of streamflow data can give us important climatic information for flooding events. Persistent homology (PH), a new analysis tool in topological data analysis (TDA) offers a new way to look at the information in a data set using qualitative approach. PH uses topology to extract topological features such as connected components and cycles that exist in the data set. In this paper, we present a new approach for streamflow data analysis for flood detection by using PH. An analysis was conducted at Sungai Kelantan, Malaysia. The result shows that PH gives different pattern of topological features for dry and wet periods. In particular, there are more persistent topological features in the form of connected components and cycles in the wet periods compared to the dry periods. We observed that the time series of the distance measure corresponding to the evolution of the components is consistent with the time series of the streamflow data. As a conclusion, this study suggests that the time series of the distance measure corresponding to the evolution of the components can be used for flood detection at Sungai Kelantan, Malaysia.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3