Design and Optimization of a Rack and Pinion Type WEC Using an Auxiliary Vibrating System

Author:

Chand Avikash Kaushik1ORCID,Nasrekani Farid Mahboubi1ORCID,Mamun Kabir1ORCID,Narayan Sumesh1ORCID

Affiliation:

1. School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji

Abstract

Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100<k<240 N/m. The same was achieved for system two at a system mass of 500 kg and stiffness in the range of 100<k<138. The effect of the stiffness and mass on the response and input power has also been discussed. 

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3