Screen printed carbon electrode from coconut shell char for lead ions detection

Author:

Heliani Kinkind Raras12,Rahmawati Fitria1ORCID,Wijayanta Agung Tri3

Affiliation:

1. Research Group of Solid-State Chemistry and Catalysis, Chemistry Department, Sebelas Maret University, Indonesia

2. Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia

3. Research Group of Sustainable Thermofluids, Mechanical Engineering, Sebelas Maret University, Indonesia

Abstract

This research aimed to produce a screen-printed carbon electrode (SPCE) from an activated coconut shell carbon. As a raw material, coconut shell char provides renewability and is abundantly available in the market. Meanwhile, SPCE offers a simple electroanalytical electrode because the working, counter, and reference electrodes are in one piece. The coconut shell carbon was activated by steam at 700 oC for 1h, producing AC700 that was then characterized to ensure the result by following per under carbon as the main component, the phases, crystal structure, surface area, morphology, and elemental content. The result showed that the surface area of AC700 is 816 m2/g, and the surface structure is porous, as identified by SEM images. Impedance analysis followed by data fitting and conductivity calculation found a high conductivity of 8.68 x 10-2 Scm‑1. The produced-SPCE or SPAC700 was modified by ferrocene at various compositions of 10%; 20%; and 30% of mass. The SPAC700-Fc30 provided the best performance for lead analysis with a detection limit of 0.35 mM, a quantitation limit of 1.17 mM, and good reproducibility with a Repeatability Coefficient (RC) of 0.022. SPAC700-Fc30 showed good lead ions detection despite under 10% Cu2+ and 10% Co2+ interferences. The result confirmed the potential use of coconut shell char as the raw material for SPCE production.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3