Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes

Author:

Al-Aasama Anwer B.1ORCID,Ibrahim Adnan1ORCID,Syafiq Ubaidah1ORCID,Sopian Kamaruzzaman2ORCID,Abdulsahib Bassam M.3ORCID,Dayer Mojtaba1ORCID

Affiliation:

1. Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2. Mechanical Engineering, Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

3. Al-Awsat Technical University, 31001, Iraq

Abstract

The study investigated the thermal performance of a photovoltaic thermal (PVT) collector with a twisted absorber tube and nanoparticle-enhanced phase change material (nano-PCM). The PVT collector consisted of twisted absorber tubes, a container filled with nano-PCM, and a photovoltaic (PV) panel. To assess its efficiency, five different configurations were tested using an indoor solar simulator. The configurations analyzed were as follows: (a) an unenhanced PV panel, (b) PVT with circular absorber tubes (C-PVT), (c) PVT with twisted absorber tubes (T-PVT), (d) C-PVT with nano-PCM (C-PVT-PCM), and (e) T-PVT with nano-PCM (T-PVT-PCM). The thermal, photovoltaic, and combined photovoltaic-thermal efficiencies were evaluated at varying mass flow rates (0.008-0.04kg/s) and a constant solar irradiance of 800W/m2. Among the configurations tested, the T-PVT-PCM configuration demonstrated the highest performance. Specifically, at a mass flow rate of 0.04kg/s, solar irradiance of 800W/m2, and an ambient temperature of 27°C, it achieved photovoltaic, thermal, and combined photovoltaic-thermal efficiencies of 9.46%, 79.40%, and 88.86%, respectively. The utilization of twisted absorber tubes in the design notably improved thermal efficiency by enhancing heat transmission between the liquid and the tube surface. Furthermore, the implementation of T-PVT-PCM led to a significant reduction in surface temperature. Compared to the unenhanced PV panel, it lowered the surface temperature by approximately 30°C, and when compared to C-PVT-PCM, it reduced it by around 10°C. Notably, T-PVT-PCM outperformed the unenhanced PV panel by exhibiting a 34.5% higher photovoltaic efficiency. Overall, the study highlights the performance of the PVT collector with twisted absorber tubes and nanoparticle-enhanced phase change material. The innovative design achieved remarkable thermal efficiency, reduced surface temperatures, and significantly enhanced photovoltaic efficiency compared to traditional configurations. These findings contribute to the development of more efficient and versatile solar energy systems with the potential for broader applications in renewable energy technology.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3