Tea clone classification using deep CNN with residual and densely connections

Author:

Ramdan Ade1,Zilvan Vicky1ORCID,Suryawati Endang1,Pardede Hilman F1ORCID,Rahadi Vitria Puspitasari2

Affiliation:

1. Lembaga Ilmu Pengetahuan Indonesia

2. Pusat Penelitian Teh dan Kina

Abstract

Tea clone of Gambung series is a superior variety of tea that has high productivity and quality. Smallholder farmers usually plant these clones in the same areas. However, each clone has different productivity or quality, so it is difficult to predict the production quality in the same area. To uniform the variety of clones in an area, smallholder farmers still need experts to identify each plant because one and other clones share the same visual characteristics. We propose a tea clone identification system using deep CNN with skip connection methods, i.e., residual connections and densely connections, to tackle this problem. Our study shows that the proposed method is affected by the hyperparameter setting and the combining feature maps method. For the combining method, the concatenation method on a densely connected network shows better performance than the summation method on a residual connected network.

Funder

Pusat Penelitian Informatika, Lembaga Ilmu Pengetahuan Indonesia

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integration of Advanced Design Patterns in Deep Learning for Agriculture Along With Waste Processing;Advances in Environmental Engineering and Green Technologies;2024-06-14

2. Review of Deep Learning Using Convolutional Neural Network Model;Engineering Headway;2024-03-05

3. Classification Of Javanese Script Using Convolutional Neural Network With Data Augmentation;2022 IEEE 8th Information Technology International Seminar (ITIS);2022-10-19

4. Comprehensive Review on Tea Clone Classification Systems;2022 2nd Asian Conference on Innovation in Technology (ASIANCON);2022-08-26

5. Segmentation of Enhalus acoroides seagrass from underwater images using the Mask R-CNN method;IOP Conference Series: Earth and Environmental Science;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3