Synthesis of Sodium Lauryl Sulfate (SLS) and Hexadecyltrimethylammonium Bromide (HDTMA-Br) Surfactant-Modified Activated Carbon as Adsorbent for Pb2+ and NO3-

Author:

Arnelli Arnelli1,Fazira Rahmatul1,Astuti Yayuk1ORCID,Suseno Ahmad1

Affiliation:

1. Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang

Abstract

The adsorption efficiency and selectivity of activated carbon as an adsorbent for ions can be improved. One way is to convert activated carbon into surfactant modified activated carbon (SMAC). The surfactants used in this study were the anionic surfactant Sodium Lauryl Sulfate (SLS) and the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br). This research aims to synthesize SMAC to obtain a material with a surface charge and absorb ions better than activated carbon. This research consisted of four stages. The first step was the carbonization of rice husks using a pyrolysis reactor at 400°C for 1 hour. The second stage was carbon activation using 30% ZnCl2 and microwave radiation for 5 minutes and 400 W. The third stage was the modification of activated carbon and characterization by FTIR, SEM, SAA. The fourth stage was the adsorption of Pb cations and nitrate anions by carbon, activated carbon, and SMAC. Several variables were applied, such as the type of surfactant, time, and method of modification. There are three ways of modification: (1) method A, in which activated carbon is brought into contact with SLS then HDTMA-Br. (2) Method B in which activated carbon was contacted with HDTMA-Br then SLS. (3) Method C in which activated carbon was brought into contact with SLS together with HDTMA-Br. All variables were investigated. The results showed that the optimum time for making SMAC for both surfactants was 4 hours, the optimum concentrations of SLS and HDTMA-Br were 60 and 300 ppm, respectively. SMAC made by the C method was the most effective at adsorbing Pb2+ and NO3- with adsorption capacities of 1.376 and 0.896 mg/g, respectively. The success of SMAC synthesis was evidenced by the S=O and (CH3)3N+ groups in the FTIR spectra. The SMAC surface area is smaller than activated carbon, 14.472 m2/g, but the surface morphology is smoother and more homogeneous.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3