Affiliation:
1. Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
2. Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Leningrad district, Gatchina, 188300, Russia
Abstract
Proofreading function by the 3′→ 5′ exonuclease of DNA polymerase δ (pol δ) is consistent with the observation that deficiency of the associated exonuclease can lead to a strong mutation phenotype, high error rates during DNA replication, and ultimately cancer. We have isolated pol δdfrom isotonic (pol δi) and detergent (pol δd) calf thymus extracts. Pol δdhad a 20-fold higher ratio of exonuclease to DNA polymerase than pol δi. This was due to the physical association of the TREX2 exonuclease to pol δd, which was missing from pol δi. Pol δdwas fivefold more accurate than pol δiunder error-prone conditions (1 μM dGTP and 20 dATP, dCTP, and dTTP) in a M13mp2 DNA forward mutation assay, and fourfold more accurate in an M13mp2T90 reversion assay. Under error-free conditions (20 μM each of the four dNTPs), however, both polymerases showed equal fidelity. Our data suggested that autonomous 3′→ 5′ exonucleases, such as TREX2, through its association with pol I can guarantee high fidelity under difficult conditions in the cell (e.g., imbalance of dNTPs) and can add to the accuracy of the DNA replication machinery, thus preventing mutagenesis.
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献