Toll-Like Receptors in Angiogenesis

Author:

Grote Karsten1,Schütt Harald1,Schieffer Bernhard1

Affiliation:

1. Cardiology and Angiology, Hannover Medical School, Hannover, Germany

Abstract

Toll-like receptors (TLRs) are known as pattern-recognition receptors related to the Toll protein ofDrosophila. After recognition of pathogen-associated molecular patterns of microbial origin, the TLRs alert the immune system, and initiate innate and adaptive immune responses. The TLR system, though, is not confined solely to the leukocyte-mediated immune defense against exogenous pathogens. Besides myeloid cells, TLR expression has been reported in multiple tissues and cell types, including epithelial and endothelial cells. Moreover, despite the microbial patterns that are commonly accepted as TLR ligands, there is increasing evidence that TLRs also recognize host-derived molecules. In this regard, recent studies point to an involvement of TLRs in various chronic inflammatory disorders and cardiovascular diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, and even cancer. A common feature of these disorders is an enhanced so-called inflammation-induced angiogenesis. However, inflammation-induced angiogenesis is not solely a key component of pathogen defense during acute infection or chronic inflammatory disorders, but also plays a critical role in repair mechanisms, e.g., wound healing and subsequent tissue regeneration. Interestingly, the latest research could coincidentally demonstrate that TLR activation promotes angiogenesis in various inflammatory settings in response to both exogenous and endogenous ligands, although the precise mode of action of TLRs in this context still remains ambiguous. The objective of this review is to present evidence for the implication of TLRs in angiogenesis during physiological and pathophysiological processes, and the potential clinical relevance for new treatment regimes involving TLR modulation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3