Mathematical Model for Evaluating Slippage of Tractor Under Various Field Conditions

Author:

Almaliki Salim A.,Himoud Majed S.,Muhsin Sadiq J.

Abstract

The slippage is an essential criterion for evaluating the fuel consumption and the field performance of tractor. The objective of this research was to develop mathematical models using Design Expert software for modelling and predicting slippage of the CASE JX75T tractor (India manufacture) under operational field conditions. In this research, a chisel plough was used as a loading tool for the tractor under four levels of ploughing depths, with three levels of speed and two levels of cone index (CI) in silty clay soil texture. The experiments were carried out in the site of Basrah University. The results obtained from the fieldwork were analysed to evolve mathematical models and equations to predict and evaluate the performance of the tractor when the slippage occurred. According to the obtained results, the single effects of the parameters (CI, tillage depth, and forward speed) on the slippage were highly considerable (P<0.0001). Moreover, the interaction of the parameters were significant (p<0.05). The slippage of tractor increased by 187 and 116 % with increasing ploughing depth up to 25 cm and forward speed up to 1.53 m.s-1, respectively. On the other hand, tractor slippage reduced by 34% when CI increased up to 980 kPa. The data analysis showed that the developed model has passable imitation ability and excellently executed in confront of the actual data. This confirms the accuracy of the model for predicting tractor slippage under different fieldworks.

Publisher

Basrah Journal of Agricultural Sciences, College of Agriculture, University of Basrah

Subject

Horticulture,Pollution,Agronomy and Crop Science,Animal Science and Zoology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3