Abstract
In recent years, natural fibers have become more widely used as reinforcement in polymer composites to generate low-cost products. Fibrous reinforcements in polymer matrices lead to good mechanical and electrical properties for composite materials. Depending on the grade and orientation, composites can be one-fifth the weight of steel while offering similar or better stiffness and strength. In addition, unlike steel or aluminum, composites do not rust or corrode. Composite materials reinforcing phase gives durability, strength, and stiffness. Composite materials have traditionally been employed as structural materials. Composite materials are increasingly being used in electrical applications such as bushings, circuit breakers, coupling capacitors, and so on, thanks to the growing growth of the electrical sector. The design parameters for structural and electrical composites differ dramatically due to the enormous differences in property requirements. Depending on the application, structural composites. Structural composites prioritize sufficient strength and modulus, while electrical composites prioritize superior dielectric constant, thermal conductivity and low thermal expansion, and shielding effectiveness. In the electrical industry, low density is desired because it allows for weight reduction. It is also desirable to have a high strength-weight ratio and dielectric properties. This paper provides a brief review of the properties of polymer composite materials and their application in the high voltage industry.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献