Preparation of natural rubber-OMMT nanocomposites using mechanical mixing and acid free co-coagulation methods: effect of processing method on mechanical properties

Author:

Abstract

The masterbatches were prepared by acid free co-coagulation (AFCC) method in which OMMT was incorporated into natural rubber latex (NRL) or conventional mechanical mixing. Inherent slow coagulation, and drying, stages of the AFCC method were overcome by introducing a novel gelling agent; a combination of two surfactants, namely, Cetyl tri methyl ammonium bromide (CTAB) and Sodium dodecyl sulphate (SDS). Six nanocomposites (A-nanocomposite, C-nanocomposite and M-nanocomposite) were prepared at the OMMT loadings of 2 and 5 phr; of them, two with gelling agent (A-2, A-5) and two without gelling agent (C-2, C-5) using AFCC method and two using mechanical mixing (M-2 & M-5). Controls of them (A-0, C-0 and M-0) were prepared without using OMMT. X-ray diffractograms and scanning electron spectroscopic images showed that a higher amount of aggregated clay structures was present in the M-nanocomposites, and less aggregated clay structures were present in C-nanocomposites. However randomly distributed ordered structures along with exfoliated clay structures were in the A-nanocomposites. Crosslink density and the bound rubber content of the A-nanocomposites were significantly higher than M-nanocomposites but lower than C-nanocomposites. The mechanical properties of the A- nanocomposites and C-nanocomposites were greater than those of the M-nanocomposites at each OMMT loading. The cure time of the A-nanocomposites and C-nanocomposites were also remarkably lowered compared to the M-nanocomposites. It was observed that the effect of the combined gelling agent had no adverse effect on mechanical properties.

Publisher

AMG Transcend Association

Subject

Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3