The complete chloroplast genome of Rhododendron ambiguum and comparative genomics of related species

Author:

Ma Wen BaoORCID,Ou YafeiORCID,Dayananda BuddhiORCID,Ji Hui JuanORCID,Yu TaoORCID

Abstract

Rhododendron Linnaeus, 1753, the largest genus of woody plants in the Northern Hemisphere, includes some of the most significant species in horticulture. Rhododendron ambiguum Hemsl, 1911, a member of subsection Triflora Sleumer 1947, exemplifies typical alpine Rhododendron species. The analysis of the complete chloroplast genome of R. ambiguum offers new insights into the evolution of Rhododendron species and enhances the resolution of phylogenetic relationships. This genome is composed of 207,478 base pairs, including a pair of inverted repeats (IRs) of 47,249 bp each, separated by a large single-copy (LSC) region of 110,367 bp and a small single-copy (SSC) region of 2,613 bp. It contains 110 genes: 77 protein-coding genes, 29 tRNAs, four unique rRNAs (4.5S, 5S, 16S, and 23S), with 16 genes duplicated in the IRs. Comparative analyses reveal substantial diversity in the Rhododendron chloroplast genome structures, identifying a fourth variant pattern. Specifically, four highly divergent regions (trnI-rpoB, ndhE-psaC, rpl32-ndhF, rrn16S-trnI) were noted in the intergenic spacers. Additionally, 76 simple sequence repeats were identified. Positive selection signals were detected in four genes (cemA, rps4, rpl16, and rpl14), evidenced by high Ka/Ks ratios. Phylogenetic reconstruction based on two datasets (shared protein-coding genes and complete chloroplast genomes) suggests that R. ambiguum is closely related to R. concinnum Hemsley, 1889. However, the phylogenetic positions of subsection Triflora Pojarkova, 1952 species remain unresolved, indicating that the use of complete chloroplast genomes for phylogenetic research in Rhododendron requires careful consideration. Overall, our findings provide valuable genetic information that will enhance understanding of the evolution, molecular biology, and genetic improvement of Rhododendron spieces.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3